Direct Conversion of CH3NH3PbI3 from Electrodeposited PbO for Highly Efficient Planar Perovskite Solar Cells
نویسندگان
چکیده
Organic-inorganic hybrid perovskite materials have recently been identified as a promising light absorber for solar cells. In the efficient solar cells, the perovskite active layer has generally been fabricated by either vapor deposition or two-step sequential deposition process. Herein, electrochemically deposited PbO film is in situ converted into CH3NH3PbI3 through solid-state reaction with adjacent CH3NH3I layer, exhibiting a large-scale flat and uniform thin film with fully substrate coverage. The resultant planar heterojunction photovoltaic device yields a best power conversion efficiency of 14.59% and an average power conversion efficiency of 13.12 ± 1.08% under standard AM 1.5 conditions. This technique affords a facile and environment-friendly method for the fabrication of the perovskite based solar cells with high reproducibility, paving the way for the practical application.
منابع مشابه
Electrodeposition of PbO and its in situ conversion to CH3NH3PbI3 for mesoscopic perovskite solar cells.
The perovskite CH3NH3PbI3 was prepared on a mesoscopic TiO2 film, starting from electrodepositing PbO, to iodination to PbI2, and then interdiffusion reaction with CH3NH3I. The as-prepared film was used as a light absorber for the perovskite solar cells, exhibiting a high PCE of 12.5% under standard AM 1.5 conditions.
متن کاملافزایش پایداری سلولهای خورشیدی با استفاده از لایههای جاذب پروسکایتی CH3NH3PbI3 آلاییده با برم
The CH3NH3PbI3 is one of the most widely used and famous lead halide perovskite absorber layer for using in perovskite solar cells. One of the ways to deal with the instability problem of this perovskite structure in environmental condition is bromide doping in this composition. In this work, the structural and optical properties of the bromide doped CH3NH3PbI3 absorber layers were studied as w...
متن کاملFabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method
Organometallic trihalide perovskites are promising materials for photovoltaic applications, which have demonstrated a rapid rise in photovoltaic performance in a short period of time. We report a facile one-step method to fabricate planar heterojunction perovskite solar cells by chemical vapor deposition (CVD), with a solar power conversion efficiency of up to 11.1%. We performed a systematic o...
متن کاملInkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells.
A planar perovskite solar cell that incorporates a nanocarbon hole-extraction layer is demonstrated for the first time by an inkjet printing technique with a precisely controlled pattern and interface. By designing the carbon plus CH3NH3I ink to transform PbI2 in situ to CH3NH3PbI3, an interpenetrating seamless interface between the CH3NH3PbI3 active layer and the carbon hole-extraction electro...
متن کاملHigh voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate.
A low temperature (<100 °C), flexible solar cell based on an organic-inorganic hybrid CH3NH3PbI3 perovskite-fullerene planar heterojunction (PHJ) is successfully demonstrated. In this manuscript, we study the effects of energy level offset between a solar absorber (organic-inorganic hybrid CH3NH3PbI3 perovskite) and the selective contact materials on the photovoltaic behaviors of the planar org...
متن کامل